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We investigated the distributions of genetic and phenotypic variation for two Yellowstone National Park
populations of the heterocyst-forming cyanobacterium Mastigocladus (Fischerella) laminosus that exhibit dra-
matic phenotypic differences as a result of environmental differences in nitrogen availability. One population
develops heterocysts and fixes nitrogen in situ in response to a deficiency of combined nitrogen in its
environment, whereas the other population does neither due to the availability of a preferred nitrogen source.
Slowly evolving molecular markers, including the 16S rRNA gene and the downstream internal transcribed
spacer, are identical among all laboratory isolates from both populations but belie considerable genetic and
phenotypic diversity. The total nucleotide diversity at six nitrogen metabolism loci was roughly three times
greater than that observed for the human global population. The two populations are genetically differentiated,
although variation in performance on different nitrogen sources among genotypes could not be explained by
local adaptation to available nitrogen in the respective environments. Population genetic models suggest that
local adaptation is mutation limited but also that the populations are expected to continue to diverge due to
low migratory gene flow.

Understanding the origins and maintenance of ecological
diversity is a central goal of the study of microbial ecology and
evolution that requires linking genetic and phenotypic varia-
tion on a geographic scale. Population genetic theory and ex-
perimental evolution in the laboratory suggest that spatially
structured microbial populations in nature will diverge rapidly
provided that migratory gene flow between populations is low
(e.g., see references 1, 2, 18, and 33). Although evidence for
geographic structuring of microbial genetic diversity is accu-
mulating (e.g., see references 15 and 29), many questions re-
main, particularly at finer scales. Are populations locally dif-
ferentiated, genetically and phenotypically? If so, do these
differences result from local adaptation to prevailing environ-
mental conditions? Can we predict whether populations will
continue to diverge over time, based on their current genetic
structures?

There are several challenges to the study of geographic struc-
ture and local adaptation in microbial ecosystems, particularly for
microorganisms that do not form intimate associations with eu-
karyotic hosts. One is simply to unambiguously identify distinct
populations in nature. Another is to locate habitats with stable
environmental differences that consistently affect the expressed
phenotypes of the respective populations in a predictable and
ecologically interesting way. It is under such conditions that local
adaptation might be expected to be most evident. Third, it is often
difficult to cultivate an unbiased representation of in situ diversity
for investigation under controlled laboratory conditions of the
amount of phenotypic variation (and, ultimately, its genetic basis)

for traits of ecological interest among individuals both within and
between populations.

Here we describe an integrative approach to investigate ge-
netic and phenotypic differentiation within and between two
Yellowstone National Park populations of the thermophilic
cyanobacterium Mastigocladus (Fischerella) laminosus that ex-
hibit dramatic phenotypic differences in situ as a result of
environmental differences in nitrogen availability. Under the
nitrogen-limited conditions at White Creek, this large and
morphologically distinct multicellular bacterium develops in-
tercalary heterocysts, terminally differentiated cells specialized
for enabling the oxygen-sensitive process of nitrogen fixation in
an oxic environment. At Boiling River, in contrast, where a
preferred source of nitrogen is consistently available, the ge-
netic programs for heterocyst development and nitrogen fixa-
tion are not expressed. Because we can directly isolate these
bacteria with a high rate of success in laboratory culture with-
out enrichment and selection for particular genotypes, it is
possible to genetically and phenotypically characterize clones
that are representative of in situ diversity. Given sufficient
evolutionary time and genetic variation, we would expect the
relative fitness of each population to have increased on its
available nitrogen source in response to selection. We tested
whether there has been genetic divergence and local adapta-
tion of Mastigocladus populations to prevailing environmental
conditions and, if not, whether we expect these populations to
continue to diverge in the future.

MATERIALS AND METHODS

Field sites, sample collection, and nutrient chemistry. Boiling River is a
channel of Mammoth Hot Springs outflow near the north entrance of Yellow-
stone National Park that emerges from underground approximately 150 m from
its confluence with the Gardner River. White Creek is located roughly 50 km
from Boiling River in the Lower Geyser Basin of Yellowstone National Park and
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is fed by thermal discharge from several geothermal features within its drainage
area. At both sites, Mastigocladus (Fischerella) laminosus forms epilithic stream-
ers at temperatures lower than approximately 56°C. In June 2001, multiple
collections were sampled from the ends of individual streamers at both sites with
sterile 3-ml syringes and stored at ambient temperature in the dark. The tem-
perature of collection was 52°C for all collections from White Creek and ranged
between 52 and 56°C for those from Boiling River. Subsamples of each collection
were observed by phase-contrast microscopy to verify the presence of Mastigo-
cladus and to evaluate the presence or absence of heterocysts in filaments.
Macronutrient and micronutrient concentrations in water samples from both
sites were analyzed by the Analytical Services Laboratory at NC State University.
Total nitrogen (inorganic and organic) was measured as nitrogen mono-oxide
chemiluminescence with a total organic carbon-total nitrogen analyzer (Shi-
madzu) after passing a water subsample through a Pt column at 720°C.

Acetylene reduction assay. In situ nitrogen fixation rates were estimated for
both populations by the acetylene reduction method (23). Triplicate streamer
tufts collected from each site were incubated under ambient midday light (ap-
proximately 1,000 W m�2) for 3 h at 50°C in crimp-sealed serum vials containing
20 ml of the corresponding in situ water and 5 ml of acetylene gas. Triplicate
blanks with no Mastigocladus, but otherwise identical to the experimental treat-
ments, were included to estimate background acetylene reduction. Assays were
performed within 2 hours of sample collection from the respective sites. At the
end of the assay, 2.5 ml of headspace gas was withdrawn from each sample and
injected into a pre-evacuated crimp-sealed vial until analysis that evening by
flame ionization detection with a Shimadzu GC-14A gas chromatograph. The
integrated peak area of the ethylene produced by acetylene reduction was con-
verted to a concentration by using an ethylene standard curve and normalized to
the chlorophyll a concentration of the sample, determined as previously de-
scribed (13).

Direct isolation of laboratory strains. A small tuft from each collection was
streaked onto a petri dish containing D medium (3) solidified with 1.5% agar.
With the aid of a dissecting microscope, four filaments of Mastigocladus were
individually transferred to tubes of liquid D medium with a small plug of agar
excised with watchmaker forceps and incubated under 75 mmol photons m�2 s�1

of cool white fluorescent light at 50°C. Totals of 64 and 60 direct isolation
attempts were made from the White Creek and Boiling River collections, re-
spectively. When growth was evident, a small clump of filaments was transferred
to the center of a plate of D agar medium and incubated as described above. To
obtain axenic clonal cultures, individual filaments (usually a motile dispersal
filament called a hormogonium, but occasionally a fragment of outgrowth from
the original clump) were transferred within 48 to 72 h to liquid D medium as
described above. This process was repeated until the culture was judged to be
free of contamination based on microscopic observation and on the absence of
contaminating bacterial growth on D agar. Each strain designation indicates the
field site of collection (B for Boiling River, W for White Creek), the collection
(by number), and the isolation attempt made for a particular collection (A to D).

DNA isolation, gene amplification, and sequencing. Genomic DNAs were
isolated from cultures as previously described (12). An approximately 950-bp
fragment of the 16S rRNA gene was amplified from genomic DNAs of 25
randomly selected strains from each field site as described by Miller and Cas-
tenholz (12). The internal transcribed spacer (ITS) region of the rrn operon was
amplified with primers complementary to conserved flanking sequences in the
16S and 23S rRNA genes (GCTGCAACTCGCCTRCRTGAAG and AW18
[30], respectively). Amplification conditions for a 50-�l reaction mixture were
94°C for 1 min, 58°C for 1 min, and 72°C for 30 s for 35 cycles. Sequences were
also obtained for trnL-UAA (Table 1), encoding a leucine tRNA, which was
previously shown to harbor a group I intron and evolve rapidly in some cyano-
bacteria (16). The reaction conditions were 35 cycles with an annealing temper-
ature of 56°C and a 30-s extension step, but otherwise were the same as those
described above. In addition, primers were designed for the amplification of
several loci involved in nitrogen metabolism or its regulation (Table 1). A
roughly 2.3-kb segment of the nif operon (Anabaena PCC 7120 nifHD nucleotide
positions 88 to 2346) was amplified in two fragments. The reaction conditions for
the first primer set were 40 cycles with an annealing temperature of 52°C and a
1-min extension; the conditions for the second primer set were 32 cycles with an
annealing temperature of 58°C and a 1.5-min extension. The conditions for
amplifying an approximately 0.5-kb fragment of ntcA (Anabaena PCC 7120
positions 61 to 573) were 35 cycles with an annealing temperature of 56°C and a
1-min extension, and those for a 1.1-kb fragment of glnA (Anabaena PCC 7120
positions 241 to 1310) were 32 cycles with an annealing temperature of 58°C and
a 1.5-min extension. A ca. 1-kb fragment of the nir operon carrying 660 nucleotides
(nt) of the 3� end of the assimilatory nitrite reductase gene nirA and approx-
imately 200 nucleotides of the 5� end of the nitrate transport protein gene nrtA

was also amplified with 40 cycles with an annealing temperature of 54°C and a
1-min extension. A fragment of the assimilatory nitrate reductase gene narB
(Anabaena PCC 7120 positions 100 to 2151, excluding nucleotides 997 to 1053)
was amplified in two fragments. The conditions were 35 cycles with an annealing
temperature of 54°C and a 1.5-min extension time for the first primer set and 45
cycles with an annealing temperature of 50°C and a 1.5-min extension time for
the second primer set. To amplify most of the open reading frame along with the
upstream sequence for the heterocyst development regulatory gene devH, the
reverse primer in Table 1 was originally paired with the primer GANCARCAN
CGNGCNTG, designed from the conserved amino acid signature SCCRAH
in the arginyl-tRNA synthetase gene upstream of devH. The forward primer in
Table 1 was designed from the Mastigocladus sequence of this fragment, and an
approximately 1.1-kb fragment of devH and upstream DNA was then amplified
for most strains with 40 cycles with an annealing temperature of 50°C and a
1.5-min extension time.

Amplified products were cleaned either directly with a QIAquick PCR puri-
fication kit (QIAGEN) or following gel purification with a QIAquick gel extrac-
tion kit (QIAGEN). Cycle sequencing and cleaning were performed as previ-
ously described (11), with sequencing done bidirectionally on an ABI 3700
sequencer.

Phylogeny reconstruction. Phylogenies for Yellowstone Mastigocladus, Mas-
tigocladus (Fischerella) CCMEE 5321, Hapalosiphon IAM M-264 (AB093485),
Chlorogloeopsis PCC 6718 (AF132777), Anabaena PCC 7120 (X59559), and the
outgroup cyanobacteriun Chroococcidiopsis PCC 7203 (from the Ribosomal Da-
tabase Project II website [http://rdp.cme.msu.edu]) were reconstructed from 948
nucleotides of the 16S rRNA gene (Escherichia coli positions 360 to 1326) by
maximum likelihood, maximum parsimony, and neighbor-joining methods, using
PAUP�, version 4.0b (24), following sequence alignment as described previously
(12). For the likelihood analysis, the model of DNA sequence evolution was
chosen by hierarchical likelihood ratio tests, as implemented in Modeltest (17).
The model selected (HKY � G � I) estimates the transition/transversion ratio
and incorporates among-nucleotide site rate heterogeneity by estimating both
the proportion of invariant sites and the shape of the discrete approximation
(n � 4 categories) of a gamma distribution for variable sites. The analysis was
bootstrap replicated 1,000 times. Both the neighbor-joining tree and the maxi-
mum parsimony tree (obtained by an exhaustive search of all possible trees) were
bootstrapped 10,000 times.

Population genetic parameter estimation. Nucleotide sequences aligned by
Clustal W (27) were analyzed with respect to the following with DnaSP (20):
synonymous and nonsynonymous polymorphic sites; number of haplotypes; the
average number of nucleotide differences between a pair of sequences; nucleo-
tide diversity and the population-scaled mutation rate; degree of genetic differ-
entiation between populations, estimated by FST (9); and the effective number of
codons (32), an index of codon usage. Sequence data were also tested for
conformity to the Wright-Fisher neutral model with Tajima’s (26) D test, as
implemented in DnaSP. Hudson et al.’s (8) test of the neutral theory of molec-
ular evolution, as implemented in DnaSP, was used to evaluate whether different
genes have had different selective histories.

Migration rates between the two populations and their separation time were

TABLE 1. Primers designed for use in this study

Locus Primer sequences (forward/reverse)

nifHD......................AATACCCTAGCTGCGATGGC/CGTTGAGGT
GTTTTTCGCGC

GCGCGAAAAACACCTCAACG/GCGAAACC
GTCGTAACCG

ntcA ........................CACAAGATAANGCCCTAGC/CGCARATCCC
CTAGTAGCC

devH .......................AAATAGGTGATTAGGGAGTGGG/AAACGG
GTGACGGTAACACG

narB ........................AACMCTWTGTCCKTAYTGTGG/CCWGCTT
CYCTWCCTCCC

AATCTGCACTTGATGACCGG/GCNCAGGCT
TTTARNTCNGG

glnA ........................GATGGCGTACCTTTNGANGG/AANTCNTAN
GGATGAGGNCG

nirA.........................GAAGTCGAACAGCGTTTGGG/TGCTGTGG
TTGCACTTGG

trnL-UAA ..............GCTCTCAAANTCAGGGAAACC/GGACTCTC
CCTTTACCCTCG
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estimated for an aligned multilocus data set (for narB, glnA, devH, and nifHD)
according to the “isolation with migration” (IM) model of population divergence
(6, 14), as implemented by the IM program (http://lifesci.rutgers.edu/�heylab
/HeylabSoftware.htm). The model considers the current distribution of sequence
polymorphisms to be the product of physical separation of an ancestral popula-
tion into two descendant populations at some time in the past, following which
there may or may not have been gene exchange by migration between popula-
tions. IM uses the Markov chain Monte Carlo approach to fit the model to the
aligned sequence data and estimate the likelihoods of the model parameters
(separation time at which the ancestral population split into the two populations,
migration rates, population mutation rates, and their four locus-specific mutation
scalars) given the sequence data. Because the timescale of sequence divergence
in units of generations or absolute time is unknown, the model scales the pa-
rameters by the mutation rate. The Markov chain was initiated with a burn-in
length of 100,000 steps to achieve independence of starting conditions, followed
by a chain length of 250,000,000 steps. To attain good chain mixing, the software
authors recommend an effective sample size (the number of independent pa-
rameter values) of �500 for each estimated parameter and multiple independent
runs of the Markov chain. Under the conditions used, the effective sample sizes
of the model parameters ranged between 690 and 37,000, and the results for
three independent runs were nearly identical.

Physiological assays. Ten strains were randomly chosen from each population
and assayed for fitness (measured as the exponential growth rate) under standard
maintenance conditions in both N-containing and non-N-containing media (D
and ND medium, respectively). The compositions of the media used in the two
nitrogen treatments differed only with respect to the presence or absence of
nitrate as a source of combined N, respectively. Prior to the assay, an exponen-
tial-phase stock culture of each strain growing in N-containing medium was split
into two subclones and grown in N-containing medium for 48 h. Each exponen-
tial-phase subclone was next split into N-containing and non-N-containing cul-
tures. To do so, a portion of each subclone culture was pelleted in a 1.5-ml
microcentrifuge tube, rinsed three times in 1 ml non-N-containing medium, and
then resuspended in non-N-containing medium to an optical density of 1 at 750
nm. One-hundred-microliter aliquots were then delivered to fresh N-containing
and non-N-containing tubes for a total of 2 (populations) � 10 (strains) � 2
(subclones) � 2 (N treatments) � 80 tubes. After several generations of expo-
nential growth, a homogenized sample from each tube was transferred to a fresh
tube of corresponding medium to a final optical density of 0.001. These exper-
imental tubes were incubated for 14 days and monitored with a spectrophotom-
eter for changes in optical density, and exponential growth rates were estimated
from the linear component of a plot of the logarithms of optical densities as a
function of time. Data were analyzed with SPSS, version 8.0, according to a
mixed-effects nested analysis of variance (ANOVA) model with growth rate as
a dependent variable, nitrogen and population treatments as fixed factors, and
the strain as a random variable nested within the population.

Nucleotide sequence accession numbers. The sequences reported in this paper
have been deposited in the GenBank database under the following accession
numbers: rrn-16S rRNA, DQ372835; ITS, DQ372836; devH, DQ385930 to
DQ385949; glnA, DQ372815 to DQ372834; narB, DQ385950 to DQ385969; nifHD,
DQ385910 to DQ385929; nirA, DQ385970 to DQ385989; ntcA, DQ385890 to
DQ385909; and trnL-UAA, DQ372837.

RESULTS AND DISCUSSION

Field site characteristics. White Creek and Boiling River
are both dominated (in biomass) by Mastigocladus (Fischerella)
laminosus, a multicellular cyanobacterium that, under nitro-
gen-limited conditions, is capable of developing intercalary
heterocysts, terminally differentiated cells specialized for en-
abling the oxygen-sensitive process of nitrogen fixation in an
oxic environment. Over the course of several years, it had been
observed that Mastigocladus filaments in White Creek pro-
duced heterocysts, whereas those in Boiling River did not
(S. R. Miller, unpublished observations). Because both hetero-
cyst development and nitrogen fixation activity are negatively
regulated by the presence of preferred N sources (31), it was
suspected that the phenotypic differences observed between
the two populations were the results of environmental effects
on gene expression. Consistent with this interpretation, an

analysis of water samples collected in June 2001 confirmed that
dramatic differences in nitrogen content between the two sites
can explain the repression or production of heterocysts in the
respective populations. Combined nitrogen was abundant in
Boiling River, principally as nitrate but also, to a much lesser
extent, as organic N (Table 2); in contrast, combined nitrogen
was not detectable in White Creek. Similar results were ob-
tained with colorimetric assays in July 1999 (not shown).

In situ nitrogen metabolism differs between populations. To
confirm that the heterocyst-producing White Creek population
was indeed actively fixing nitrogen in situ, whereas the Boiling
River population was not, we estimated the nitrogen fixation
activities of both populations by the standard acetylene reduc-
tion assay, which measures the reduction of acetylene to eth-
ylene by nitrogenase. As expected, the acetylene reduction rate
was high in the White Creek population, but acetylene reduc-
tion was not detected in the Boiling River population (Table
2), as the results did not differ from background ethylene
production levels (not shown).

Laboratory strain isolation. Multiple live collections were
taken in June 2001 for manual isolation of individual Mastigo-
cladus filaments in laboratory culture. By avoiding enrichment
prior to isolation, we did not bias the representation of the
population diversity in the samples. Nearly all isolation at-
tempts from both populations (62/64 from White Creek and
59/60 from Boiling River) were successful, indicating that the
isolation process itself did not select against the recovery of
particular genotypes in culture.

Phylogeny of Mastigocladus strains. Twenty-five strains were
randomly chosen from each population for sequencing of ap-
proximately 950 bp of the 16S rRNA gene locus. The se-
quences of all 50 strains were completely identical and were
also identical to sequences obtained for two additional Mas-
tigocladus strains which had been recently isolated from Yel-
lowstone National Park, i.e., strains CCMEE 5207 (Chocolate
Pots) and CCMEE 5208 (Obsidian Pool). The phylogenetic
positions of these strains were analyzed along with those of
several additional heterocystous cyanobacteria, including a Mas-
tigocladus strain isolated from an Icelandic hot spring (CCMEE
5321) and the thermophile Chlorogloeopsis PCC 6718. The
heterocystous cyanobacteria are a monophyletic group, and all
analyses were rooted with the outgroup Chroococcidiopsis PCC
7203, which has been suggested to be the closest relative of the
heterocystous clade in many previous phylogenies (e.g., see
reference 4). The tree topology was consistent across maxi-
mum likelihood, parsimony, and neighbor-joining methods
(Fig. 1). Mastigocladus CCMEE 5321, which is morphologically
similar to the Yellowstone strains, was obtained from a similar
habitat, and has 98.1% sequence identity at this locus, was

TABLE 2. Field data for the Mastigocladus populations

Site

Nitrate
concn
(mg N
liter�1)

Ammonium
concn (mg
N liter�1)

Total
nitrogen

concn
(mg N
liter�1)

Hetero-
cysts

Acetylene
reduction

activity (nmol
�g�1 Chl

h�1)a

White Creek 	0.1 	0.1 	0.1 � 151.5 
 31.19
Boiling River 0.13 	0.1 0.15 � 1.5 
 0.82

a Values are means 
 standard errors.
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inferred with substantial bootstrap support to be the sister
taxon of the Yellowstone strains.

Single nucleotide polymorphism (SNP) identification in Yel-
lowstone populations. To determine whether the White Creek
and Boiling River populations are genetically distinct, we ex-
amined sequence variation at loci that evolve more rapidly
than the extremely conserved 16S rRNA gene. Of the 25
strains originally characterized from each population, 10 were
randomly selected for further analysis. As found for the 16S
rRNA locus, all strains were completely identical at both the
ITS region between the 16S and 23S rRNA genes and the
trnL-UAA gene, which was previously reported (16) to be a
useful marker for the closely related Nostoc group (not shown).

We next investigated six protein-coding genes involved in
nitrogen metabolism (Table 3). glnA encodes glutamine syn-
thetase, a constitutively expressed central nitrogen metabolism
enzyme that incorporates ammonium into amino acids (5).
ntcA encodes a DNA binding protein essential for the tran-
scriptional control of many aspects of nitrogen metabolism,
including nitrogen fixation and nitrate assimilation (5). devH
encodes a DNA binding regulatory protein required for the

development of a functional heterocyst (19). nifHD encodes
two components of the nitrogenase complex, which reduces
dinitrogen to ammonium (5). The nitrate reductase (narB) and
nitrite reductase (nirA) genes are key enzymes of the nitrate
assimilation pathway (5).

Of the 7,838 nucleotides sequenced for each strain, roughly
0.3% of all sites were variable, for a total of 25 SNPs. The
majority of SNPs in protein-coding regions were synonymous,
with replacement SNPs only observed for genes involved in
nitrate assimilation (Table 3). The average nucleotide diversity
(�) at silent sites (the number of nucleotide differences per
silent site between two randomly chosen sequences) was
0.0028. For perspective, this value is approximately three times
greater than that observed for the human global population at
noncoding autosomal loci (�0.0009) (34). More slowly evolv-
ing loci typically used in molecular microbial ecology therefore
belie substantial genetic diversity in this system.

The nucleotide diversity at silent sites (i.e., the silent site
mutation rate estimator �s) varied between 0 (ntcA) and �0.01
(narB) (Table 3). This range of � values is comparable to that
observed for primates (34). These differences can arise for
several reasons, including stochastic effects, variations in mu-
tation rates among loci due to different selective constraints
(e.g., on codon usage), and differences across genomic regions
in their recent selective histories. Codon usage bias has been
shown to be strongly correlated with levels of gene expression
and negatively correlated with the synonymous mutation rate
(21). In the present case, differences in the degree of codon
usage bias cannot explain the observed differences in the syn-
onymous mutation rate, as the Pearson correlation coefficient
between � and the effective number of codons (Table 3), an
index of codon usage (32), was not significant (P � 0.792).

Tests of the neutral theory, however, provide evidence that
different nitrogen metabolism genes have had different selec-
tive histories in the recent past for Yellowstone Mastigocladus
organisms as a whole. The HKA test (8) examines the neutral
theory prediction that levels of polymorphism within lineages
should be positively correlated with evolutionary divergence
between lineages (e.g., fast-evolving genes should have high
levels of polymorphism). The test uses chi-square distribution
expectations to compare observed ratios of polymorphism to
divergence for two or more regions of the genome, and devi-
ations from the null model that these ratios are the same are

FIG. 1. Maximum likelihood phylogeny of Yellowstone Mastigocla-
dus inferred from 948 nucleotides of the 16S rRNA gene. Values at
nodes indicate bootstrap frequencies for likelihood, parsimony, and
neighbor-joining phylogenies, respectively.

TABLE 3. Summary of polymorphism data for nitrogen metabolism genesa

Locus Size (nt)

No. of
polymorphic

sites
No. of
alleles k

� �w
ENC D FST

S N S N S N

narB 1,998 10 5 3 6.71 0.0096 0.0014 0.0059 0.0009 53.39 2.17* 0.76
nirA 946 0 1 2 0.44 0 0.0007 0 0.0004 51.29 1.03 0.56
nifHD 2,275 4 0 3 2.06 0.0032 0 0.0018 0 39.76 2.39* 0.94
devH 1,045 2 0 2 0.88 0.0015 0 0.0009 0 48.94 1.33 0.56
glnA 1,061 3 0 2 0.81 0.0032 0 0.0033 0 45.55 �0.13 0.22
ntcA 513 0 0 1 0 0 0 0 0 60.3

a The sample is 10 randomly chosen alleles from each population. Abbreviations: S, silent site substitutions (synonymous codon sites and noncoding regions); N,
replacement substitutions at nonsynonymous codon sites; k, average nucleotide difference between a pair of sequences; �, number of nt differences between two
randomly chosen alleles per silent and replacement site; �w, Watterson’s estimator of the scaled mutation rate per site; ENC, effective number of codons; D, Tajima’s
D value. *, P 	 0.05.
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evidence that the evolutionary processes shaping the genealo-
gies of the regions are different. We compared polymorphisms
within Yellowstone isolates and divergence between Yellow-
stone Mastigocladus and Mastigocladus strain CCMEE 5321 for
the following four loci: narB (1,944 nt), nirA (776 nt), nifHD
(999 nt), and devH (1,591 nt). The results presented are for all
nucleotide sites (Table 4), but the results based on silent sites
alone were qualitatively similar. Significant deviations from the
neutral model were observed for the narB/nifHD (P � 0.037)
and narB/devH (P � 0.037) comparisons. Similarly, the test for
narB/nirA was of borderline significance (P � 0.08). Because
these loci are only approximately 5 kb apart on the Mastigo-
cladus genome (data not shown), this result suggests that genes
in close proximity can evolve with very different evolutionary
dynamics.

Although the HKA tests suggested that the narB locus has
experienced a different selective history from that of the other
regions, the results do not indicate the source of deviation
from the model. A deficit of polymorphisms in nifHD and
devH, an excess of polymorphisms in narB, reduced divergence
at narB, excessive divergence at nifHD and devH, or a combi-
nation of the above could all potentially produce these results.
It appears that polymorphism patterns contribute greatly to
the observed deviations from the neutral model because the
amount of narB polymorphism (0.77% of sites) is approxi-
mately four times that of the other loci (0.16 to 0.19%),
whereas the levels of between-lineage divergence are more
comparable (3.0% for narB and 4.1 to 5.9% for other loci).
While narB in particular appears to be anomalous and is likely
the primary source of deviation, the allelic identity of a strain
is not obviously associated with its performance on nitrate (see
below).

White Creek and Boiling River populations are genetically
differentiated. The White Creek and Boiling River populations
are genetically differentiated from each other, despite their
close proximity. This is most strikingly illustrated by the obser-
vation that no haplotype was shared between populations
(Table 5). White Creek and Boiling River also have very differ-
ent population genetic structures. Whereas no molecular varia-
tion was observed among the 10 strains analyzed from the Boiling
River population, the four multilocus haplotypes detected in the
White Creek sample ranged in estimated frequency between
10 and 50% and set a minimum bound on the number of
distinct genotypes present at this site (Table 5). Physical differ-
ences between the White Creek and Boiling River habitats may
contribute to the observed differences in genetic structure.
Mastigocladus dominates the biomass in White Creek from a
mean temperature below 40°C up to approximately 56°C, along
a thermal gradient that stretches for more than a kilometer.
This gradient creates a highly structured environment with the

potential, in theory, to support multiple genotypes with diver-
gent thermal ecologies. The possibility that the different hap-
lotypes isolated from the White Creek site differ in their ther-
mal performance traits requires further investigation. In
contrast, Boiling River is a short (ca. 150-m) channel with,
consequently, an insignificant thermal gradient and a much
smaller population size. Its less heterogeneous environment
might be expected to support fewer genotypes than White
Creek and to render the population more prone to environ-
mental perturbation (e.g., an increase in temperature). Small
populations are also more susceptible to the removal of vari-
ation by genetic drift (particularly in the event of a perturba-
tion-induced population bottleneck) or by the selective sweep
of a favored genotype. Because mutation introduces new vari-
ation into a population, the lack of detectable variation in
Boiling River suggests that a recent purging of genetic diversity
has indeed occurred. It is not possible, however, to speculate
whether this homogenization was due to chance or adaptation
without knowledge of the population’s diversity levels and de-
mography, respectively, in its recent past.

Although data are limited for other locations in Yellow-
stone, our results for two additional park strains are consistent
with the hypothesis that Mastigocladus haplotypes are unique
to local populations. The narB-nifHD-devH-glnA haplotypes
(according to the coding scheme in Table 5, but including
alleles not observed for White Creek or Boiling River) of
strains CCMEE 5207 and 5208 were 4-1-1-1 and 5-4-1-3, re-
spectively.

The signature of this observed local genetic subdivision be-
tween populations should also be evident in the genealogies of
the individual loci. A useful null model of the expected pattern
of DNA polymorphisms in a sample of alleles can be derived
from gene genealogies modeled as a coalescent process ac-
cording to the neutral Wright-Fisher model (e.g., see reference
7). Briefly, for a large and constant-sized population of N
haploid individuals, the model assumes that individuals in one
generation are equally likely to leave offspring in the next
generation, so the contributions of alleles by individuals to the
next generation are approximately Poisson distributed. As a
result, for a sample of n alleles, pairs of alleles (which may or
may not be genetically identical) coalesce backwards in time
(in units of generations) by an approximately exponentially
distributed process until the most recent common ancestor
(i.e., the root of the gene tree) of the sample is found. For our
case of 20 alleles, the probability that the most recent common
ancestor of the sample is the root of the entire population N is
expected to be approximately 90%. Neutral mutations, which
do not affect the likelihood of leaving offspring, are added to
the genealogy at a constant rate independent of coalescence

TABLE 4. HKA test results

Gene
2 value for gene comparisona

narB nifHD devH nirA

narB 4.4** 6.6** 3.0*
nifHD 0.1 0.0
devH 0.0

a **, P 	 0.05; *, 0.05 	 P 	 0.10.

TABLE 5. Multilocus haplotypes and within-population frequencies

Population Haplotype
Allele

Frequency
narB nirA nifHD devH glnA

White Creek A 2 2 3 2 1 0.5
B 3 1 2 1 2 0.3
C 3 2 3 2 1 0.1
D 3 1 3 1 1 0.1

Boiling River A 1 1 1 1 1 1.0
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events and can occur a maximum of one time at a given nu-
cleotide site. This assumption of an infinite-site model specifies
a direct correspondence between the number of mutations and
the number of observed polymorphic sites in a sample. Be-
cause there is no evidence for repeat mutations at any nucleotide
site in our data (e.g., no examples of three-variant sites), this
assumption is reasonable.

Different estimators of the population-scaled mutation rate
(�), based on either the number of polymorphic sites (28) or
average pairwise nucleotide differences (25) (� is Tajima’s
estimator expressed on a per-site basis), give identical results
when the data conform to the neutral Wright-Fisher model.
Geographic subdivision violates the Wright-Fisher model, how-
ever, because alleles from the same site are more likely to
coalesce than alleles from different sites. In a genealogy, this
means that the time to coalescence for alleles from different
sites is relatively longer than expected, with the result that
there will be more mutations than expected along internal
branches of the genealogy and an excess of intermediate-fre-
quency sequence variants in the sample. Because Tajima’s es-
timator of � weighs mutations on internal branches more
heavily than those at the tips of the genealogy, whereas Watter-
son’s � weighs all mutations equally, significant positive distor-
tion from zero of the normalized difference of the two estima-
tors (D) is evidence for deviation from the neutral model
expectation due to population subdivision (26). Ideally, this
distortion should be evident at multiple loci. However, because
the ability to infer the shape of a genealogy increases with the
number of mutations in a sample, our estimate of D will be
most reliable for the narB data. D was significantly positive for
both narB and nifHD (Table 3), providing genealogical evi-
dence for the subdivision of genetic variation between White
Creek and Boiling River.

Finally, the degree of genetic differentiation between popu-
lations can be directly estimated by FST, which takes on values
between 0 (when different populations harbor the same alleles
in the same proportions) and 1 (when the populations are fixed
for different alleles). From a genealogical perspective, FST

measures the magnitude of the difference in expected mean
times to coalescence between a pair of alleles from the same
location and a pair drawn at random from the entire sample
(22). The observed values of FST for polymorphic loci were
considerable and ranged between 0.22 and 0.94 (Table 3). For
comparison, the FST value for two Yellowstone populations of
the hyperthermophilic archaeon Sulfolobus was estimated to
be 0.37 (29).

Fitness on different N sources. The genetic differentiation
observed between the White Creek and Boiling River sites
raises the question of whether these Mastigocladus populations
also differ with respect to relative fitness on the respective N
sources encountered in situ, which would suggest adaptation to
local conditions. Given sufficient time and genetic variation, we
would expect that performance on assimilated N will improve
within a population, whereas the ability to assimilate an unused
N source (because it is either not available in situ or not
preferred) will decline due to relaxed selective constraints on
genes involved in its metabolism. As a first attempt to investi-
gate whether there are locally adaptive differences in nitrogen
metabolism between the two populations, we tested whether
members of the Boiling River population perform better on

average when grown with nitrate as a N source than the White
Creek population and, conversely, whether members of the
latter population outperform the Boiling River population un-
der nitrogen-fixing conditions. To do this, we assayed growth
on both N-containing (nitrate) and non-N-containing (N2) me-
dia for duplicate subclone lines of the 10 randomly selected,
genetically characterized strains from each population. The
exponential growth rate (h�1) and yield (optical density fol-
lowing 14 days of incubation) were each analyzed with a mixed-
effects nested ANOVA model, with N source and population
as fixed factors and the random factor (strain) nested within
population.

Initial inspection of the growth rate data revealed that the
two populations performed similarly as a whole on N-contain-
ing and non-N-containing media (Fig. 2). In the nested model,
there were significant effects of N source (F � 45.41; P 	
0.0001) and strain within population (F � 6.61; P 	 0.0001).
Neither the effect of population (P � 0.90) nor the population–
N-source interaction (P � 0.13) was significant, suggesting that
there is no evidence for population-wide adaptation to the
local N source. The N source effect, with the mean perfor-
mance on nitrate being superior to that on dinitrogen, was
expected given the greater energetic cost of nitrogen fixation.
The strain-within-population effect indicated differences in
growth rate among strains within at least one of the popula-
tions. To test which population contained strains that were
significantly different, sets of contrasts were performed for
each population. Whereas there was clear evidence for growth
rate variation among members of the White Creek population
(F � 12.25; P 	 0.0001), strains from the Boiling River pop-
ulation did not differ from each other (F � 0.96; P � 0.48). The
latter was expected, given that we detected no SNP variation
among the Boiling River strains.

Each population was further analyzed separately by ANOVA,
with N source and strain as factors. Both models explained
most of the variation in their respective data (R2 � 0.94 for the
White Creek model; R2 � 0.81 for the Boiling River model).
Consistent with the above result, only the effect of the N source
was significant for the Boiling River data (F � 60.99; P 	
0.0001 [compare with values of 1.71 for F and 0.15 for P for the
strain effect and of 1.00 for F and 0.47 for P for the N-source–
strain interaction]). That is, all strains performed the same,
with substantially higher fitness on N-containing medium. In

FIG. 2. Exponential-growth-rate constants (means 
 standard er-
rors) for White Creek (WC) and Boiling River (BR) populations
grown in the presence (�N) or absence (�N) of nitrate. The results for
nitrogen treatments were significantly different for both populations
(P 	 0.0001).
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contrast, N source (F � 28.91; P 	 0.0001), strain (F � 24.47;
P 	 0.0001), and their interaction (F � 6.52; P 	 0.0001) were
all very highly significant for the White Creek data. Qualita-
tively similar results were obtained for the yield models (not
shown).

The interaction between N source and strain for White
Creek is of interest, as it indicates a genotype-environment
interaction within this genetically heterogeneous population
which can largely be understood in terms of its genetic struc-
ture. The interaction principally manifests itself as the different
slopes of the norm of reaction between N-containing and non-
N-containing treatments for strains with the WC-2 haplotype
and for all other strains, respectively. Whereas the mean ex-
ponential growth rate (day�1) for other strains was higher with
nitrate, as expected (0.023 
 0.0006 versus 0.019 
 0.0006
without N), strains belonging to the WC-2 haplotype group
actually grew at comparable rates under nitrogen-fixing condi-
tions (0.016 
 0.0005) and with nitrate (0.014 
 0.0011). The
basis for this difference is not clear; visual inspection of WC-2
strains confirmed the absence of heterocysts when grown with
nitrate, indicating that the strains could use the nitrate and
were not growing by nitrogen fixation. However, no difference
in yield on the respective N sources was observed among White
Creek strains (data not shown).

Gene flow between populations is insufficient to prevent
their continued divergence. Although there is no clear evi-
dence for local adaptation of the current Mastigocladus popu-
lations, the question of whether they will continue to diverge
and possibly adapt to local conditions in the future remains.
The answer depends on whether the rate of gene flow between
populations is sufficient to prevent further divergence, but the
current distribution of molecular variation within and between
the White Creek and Boiling River populations can potentially
be explained by competing models which make very different
predictions about their evolutionary fates. Specifically, the ob-
served values of FST (Table 3) can be obtained by assuming
either (i) the recent isolation of populations, with no gene flow
(migration) between them, or (ii) that the populations are
islands that have been separated for a long time and have
achieved an equilibrium between gene flow and genetic drift
(33). Whereas the isolation model assumes that populations
will continue to diverge genetically, the island model assumes
that the populations will not diverge more than they already
have due to migration. These models represent respective ex-
tremes, with neither necessarily being valid for a particular
data set.

Because levels of genetic differentiation are typically associ-
ated with degrees of phenotypic and ecological diversification,
evaluating whether these Mastigocladus populations will con-
tinue to diverge genetically has important implications for their
potential to adapt to local conditions as well as for our general
understanding of how the ecological diversity of microorgan-
isms becomes geographically structured. The sharing of alleles
(e.g., for devH and glnA) between populations suggests their
recent separation, but the lack of a shared multilocus haplo-
type also suggests that local differentiation outpaces migratory
gene flow. We tested whether these populations have indeed
been recently isolated, with negligible gene flow between them,
by implementing the IM model (6, 14), a recently developed
approach that avoids the restrictive assumptions of the above

isolation and island models, including relaxation of the as-
sumption that migration rates between populations are equal.
IM uses a Markov chain Monte Carlo approach to estimate the
likelihoods of both separation time and migration rate (which
are both normalized by the mutation rate) between popula-
tions from sequence data for multiple loci.

A model of recent divergence time and low (undetectable)
gene flow is most compatible with a multilocus data set for
narB, glnA, devH, and nifHD. The posterior probability distri-
butions (i.e., the likelihood function surfaces) for the separa-
tion time and migration parameters are shown in Fig. 3. The
time parameter in the model, t, is measured in units of muta-
tions since population splitting and takes on a value between 0
(for a single population that has not split) and infinity (i.e., very
large values conform to the island model). The maximum like-
lihood estimate of t is close to zero (0.045), indicating a recent
separation of the two populations. The marginal posterior
probability distributions of the migration parameters m1 (the
rate of migration for each gene copy from Boiling River to
White Creek per mutation event) and m2 (the converse) are
maximized at 0.415 and 0, respectively (Fig. 3). The former
estimate, however, is not significantly different from zero by a
likelihood ratio test [�2�(ln L) � 0.78; P � 0.38 for 2 dis-
tribution with df � 1]. Even if this estimate were accurate, this
amount of gene flow would be insufficient to prevent continued
population divergence. The actual number of migrants per
generation, Nm, that is predicted by this estimate can be de-
rived for each locus from the IM model as mWC�ui, where � is
the estimated general population mutation rate parameter and
ui is the estimated relative locus-specific mutation scalar for
locus i (not shown). Estimated values of Nm for the four loci
ranged between 0.02 and 0.14, much lower than the roughly 1
migrant gene copy per generation that is required to prevent
substantial divergence (10, 33).

Concluding remarks. We have described two recently iso-
lated bacterial populations that are early in the process of
diversifying. The number of mutations that have occurred at
the examined nitrogen metabolism loci since population isola-
tion can be estimated from the IM model by the product of t
and the sum of the mutation scalars for the individual loci (not
shown) normalized to sequence length. The maximum likeli-
hood estimate is 0.4 mutations per kb, or approximately 3
mutations over the 6.7-kb sample. This result suggests that

FIG. 3. Likelihood function surfaces for population separation
time t and migration rate per mutation event from Boiling River to
White Creek (m1) and from White Creek to Boiling River (m2).
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much of the observed segregating variation in these popula-
tions is ancestral and that geographic sorting of ancestral poly-
morphisms has probably, to this point, played a larger role in
the genetic and phenotypic differentiation of these populations
than has the input of new mutations. Altogether, the results
suggest that local adaptation to the prevailing nutrient status
may be mutation limited but also that locally adaptive muta-
tions may ultimately become fixed in their respective environ-
ments given sufficient time.
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